Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675570

RESUMO

The effects of different fermentation methods utilizing Torulaspora delbrueckii 1004 and Saccharomyces cerevisiae 32169 on the physicochemical properties, organic acid content, polyphenol and flavonoid concentrations, antioxidant activity, and volatile aroma compounds of Huaniu apple cider were investigated in this study. Employing methods of single inoculation, co-inoculation, and sequential inoculation, it was found that sequential fermentation exhibited strong fermentative power in the initial stages, effectively reducing the content of soluble solids and achieving a balanced composition of malic, succinic, and citric acids while maintaining a lower titratable acidity. Sequential inoculation was observed to significantly enhance the total polyphenols and flavonoids, as well as the antioxidant capacity (p < 0.05). Specifically, in the synthesis of volatile aroma compounds, sequential inoculation significantly enhanced the richness and diversity of the Huaniu apple cider's aromas, particularly in terms of the concentration of ester compounds (p < 0.05). Principal component analysis further confirmed the superiority of sequential inoculation in terms of aroma component diversity and richness. The findings of this study suggest that sequential inoculation of fermentation with non-Saccharomyces and S. cerevisiae is an effective strategy for optimizing the flavor characteristics of Huaniu apple cider, offering valuable theoretical support and practical guidance for enhancing cider quality and fostering the development of new products.


Assuntos
Fermentação , Aromatizantes , Malus , Saccharomyces cerevisiae , Torulaspora , Compostos Orgânicos Voláteis , Saccharomyces cerevisiae/metabolismo , Malus/química , Torulaspora/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Aromatizantes/química , Aromatizantes/análise , Polifenóis/química , Polifenóis/análise , Antioxidantes/química , Flavonoides/análise , Flavonoides/química , Odorantes/análise
2.
Metabolites ; 13(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37755278

RESUMO

The fermentation process and composition of volatile compounds play a crucial role in the production of Huaniu apple cider. This study aimed to optimize the fermentation conditions of Huaniu apple cider and quantify its volatile compounds using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). The optimal fermentation parameters were determined using response surface methodology (RSM). The optimal fermentation temperature was 25.48 °C, initial soluble solids were 18.90 degrees Brix, inoculation amount was 8.23%, and initial pH was 3.93. The fermentation rate was determined to be 3.0, and the predicted value from the verification test was 3.014. This finding demonstrated the excellent predictability of a RSM-optimized fermentation test for Huaniu apple cider, indicating the reliability of the process conditions. Moreover, the analysis of volatile compounds in the optimized Huaniu cider identified 72 different ingredients, including 41 esters, 16 alcohols, 6 acids, and 9 other substances. Notably, the esters exhibited high levels of ethyl acetate, ethyl octanoate, and ethyl capricate. Similarly, the alcohols demonstrated higher levels of 3-methyl-1-butanol, phenethylethanol, and 2-methyl-1-propanol, while the acids displayed increased concentrations of acetic acid, caproic acid, and caprylic acid. This study provides the essential technical parameters required for the preparation of Huaniu apple cider while also serving as a valuable reference for investigating its distinct flavor profile.

3.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298839

RESUMO

The aim of the study was to optimize the conditions [inoculum size (4, 6, and 8%), fermentation temperature (31, 34, and 37 °C), and apple: tomato ratio (2:1, 1:1, and 1:2)] on the viable cell count and sensory evaluation in apple-tomato pulp by response surface methodology (RSM), and determine the physicochemical properties, antioxidant activity, and sensory properties during fermentation. The optimal treatment parameters obtained were an inoculum size of 6.5%, a temperature of 34.5 °C, and an apple: tomato ratio of 1:1. After fermentation, the viable cell count reached 9.02 lg(CFU/mL), and the sensory evaluation score was 32.50. During the fermentation period, the pH value, total sugar, and reducing sugar decreased by 16.67%, 17.15%, and 36.05%, respectively. However, the total titratable acid (TTA), viable cell count, total phenol content (TPC), and total flavone content (TFC) increased significantly by 13.64%, 9.04%, 21.28%, and 22.22%, respectively. The antioxidant activity [2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging ability, 2,2'-azino-di(2-ethyl-benzthiazoline-sulfonic acid-6) ammonium salt (ABTS) free-radical scavenging ability, and ferric-reducing antioxidant capacity power (FRAP)] also increased by 40.91%, 22.60%, and 3.65%, respectively, during fermentation. A total of 55 volatile flavour compounds were detected using HS-SPME-GC-MS among the uninoculated samples and fermented samples before and after fermentation. The results showed that fermentation increased the types and total amount of volatile components in apple-tomato pulp, and eight new alcohols and seven new esters were formed. Alcohols, esters, and acids were the main volatile components in apple-tomato pulp, accounting for 57.39%, 10.27%, and 7.40% of the total volatile substances, respectively.


Assuntos
Malus , Solanum lycopersicum , Antioxidantes/química , Malus/química , Fermentação , Açúcares/metabolismo
4.
Physiol Plant ; 175(2): e13886, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36862032

RESUMO

Metabolic profiles in xylem sap are considered a fundamental mechanism for Cadmium (Cd) detoxification in plants. However, the metabolic mechanism of Brassica juncea xylem sap in response to Cd is still unclear. Here, we investigated the effects on the metabolomics of B. juncea xylem sap treated with Cd at different times by utilizing a nontargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics method for further elucidating the response mechanism of Cd exposure. The findings indicated that 48 h and 7 days Cd exposure caused significant differences in metabolic profiles of the B. juncea xylem sap. Those differential metabolites are primarily involved in amino acids, organic acids, lipids, and carbohydrates, and most of them were downregulated, which played essential roles in response to Cd stress. Furthermore, B. juncea xylem sap resisted 48-h Cd exposure via regulation of glycerophospholipid metabolism, carbon metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, linoleic acid metabolism, C5-branched dibasic acid metabolism, alpha-linolenic acid metabolism, cyanoamino acid metabolism, ABC transporters, biosynthesis of amino acids, and pyrimidine metabolism; whereas alpha-linolenic acid metabolism, glycerophospholipid metabolism, photosynthesis, and oxidative phosphorylation were regulated for resisting 7-day Cd exposure.


Assuntos
Cádmio , Mostardeira , Mostardeira/metabolismo , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo , Metaboloma , Aminoácidos/metabolismo , Xilema/metabolismo , Glicerofosfolipídeos/análise , Glicerofosfolipídeos/metabolismo
5.
BMC Plant Biol ; 22(1): 182, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395715

RESUMO

BACKGROUND: As a vital osmoticum, proline has an important role in enhancing the tolerance of plants to environmental stress. It is unclear whether the application of exogenous proline can improve the tolerance of Brassica juncea to cadmium (Cd). RESULTS: This study investigated the effects of different concentrations of proline (20, 40, 60, 80, and 100 mg/L) under Cd stress at different times (0 d, 2 d, and 7 d) on the growth and physiology of B. juncea. Treatment with exogenous proline not only increased the content of proline in B. juncea but also alleviated Cd-induced seedling growth inhibition via the maintenance of higher photosynthetic pigment content and cell viability and a decrease in the content of Cd. Moreover, it increased the activities of antioxidant enzymes and the glutathione/glutathione disulfide ratio to reduce the accumulation of reactive oxygen species. Compared with other concentrations, 60 mg/L of exogenous proline was the most effective at mitigating Cd toxicity in B. juncea. CONCLUSIONS: Exogenous proline treatment enhanced the tolerance to Cd via a decrease in Cd accumulation and reestablishment of the redox homeostasis in B. juncea.


Assuntos
Mostardeira , Poluentes do Solo , Antioxidantes/metabolismo , Cádmio/análise , Homeostase , Mostardeira/metabolismo , Oxirredução , Prolina/metabolismo , Poluentes do Solo/toxicidade
6.
BMC Plant Biol ; 22(1): 17, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986803

RESUMO

BACKGROUND: The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS: In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS: The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.


Assuntos
Alternaria/fisiologia , Cádmio/farmacologia , Mostardeira/imunologia , Doenças das Plantas/imunologia , Alternaria/efeitos dos fármacos , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Mostardeira/microbiologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta , RNA de Plantas/metabolismo , Ácido Salicílico/metabolismo , Esporos Fúngicos/efeitos dos fármacos
7.
Metabolites ; 11(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199254

RESUMO

Brassica juncea has great application potential in phytoremediation of cadmium (Cd)-contaminated soil because of its excellent Cd accumulating and high biomass. In this study, we compared the effects of Cd under 48 h and 7 d stress in roots of Brassica juncea using metabolite profiling. The results showed that many metabolic pathways and metabolites in Brassica juncea roots were altered significantly in response to Cd stress. We found that significant differences in levels of amino acids, organic acids, carbohydrates, lipids, flavonoids, alkaloids, and indoles were induced by Cd stress at different times, which played a pivotal role in the adaptation of Brassica juncea roots to Cd stress. Meanwhile, Brassica juncea roots could resist 48 h Cd stress by regulating the biosynthesis of amino acids, linoleic acid metabolism, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, ABC transporters, arginine biosynthesis, valine, leucine and isoleucine biosynthesis, and alpha-linolenic acid metabolism; however, they regulated alpha-linolenic acid metabolism, glycerophospholipid metabolism, ABC transporters, and linoleic acid metabolism to resist 7 d Cd stress. A metabolomic expedition to the response of Brassica juncea to Cd stress will help to comprehend its tolerance and accumulation mechanisms of Cd.

8.
Food Res Int ; 128: 108814, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955770

RESUMO

The metabolites of green tea influence its quality and physiological characteristics. Therefore, to further increase the utilization of green tea leaves, it is imperative to understand the distribution and variation of their secondary metabolites with respect to different harvesting times. This study compared the metabolomes of young leaves of 'Anji Baicha' between early spring tea and late spring tea in positive and negative ESI modes using UPLC-ESI-Q-TOF/MS. Potential biomarkers were selected by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of chemometrics methods. Results showed that the metabolic profiles of young leaves in early and late spring tea were significantly different. The metabolite-related pathways associated with these differences included those involved in biosynthesis of flavonoids, phenylpropanoids, flavone and flavonol, phenylalanine, tyrosine, and tryptophan. In early spring tea leaves, concentrations of amino acids (l-glutamine and l-tryptophan), (S)-(-)-limonene, most of the catechins, and flavonol/flavone glycosides were found to be significantly increased, while proanthocyanidins (proanthocyanidin A1, prodelphinidin A1, and prodelphinidin A2 3'-gallate) concentrations were significantly decreased. As a result of the metabolomics analysis of young leaves of green tea plants with respect to different harvesting time, information regarding physiological characteristics and optimal harvesting time was obtained.


Assuntos
Camellia sinensis/química , Camellia sinensis/metabolismo , Metabolômica , Folhas de Planta/química , Análise Multivariada , Análise de Componente Principal , Fatores de Tempo
9.
J Food Sci ; 84(7): 1746-1757, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31206686

RESUMO

'Anji Baicha' (Camellia sinensis) is a low-temperature-sensitive tea variety. During the development of young shoots, the leaves of 'Anji Baicha' exhibit periodic albinism. The quality of 'Anji Baicha' is closely related to the color of the fresh leaves, with whiter leaves affording a higher amino acid content and superior sensory quality after processing. However, the metabolic mechanism of its quality formation is still unclear. In this study, we analyzed the metabolomic changes of young shoots of 'Anji Baicha' and screened for metabolic markers that may be involved in the periodic albinism. Positive- and negative-mode UPLC-QTOF-MS was applied to the metabolomic analysis of young leaves of 'Anji Baicha' during three developmental stages (i.e., the pre-albescent, albescent, and regreening stages). The results revealed significant differences in the metabolic profiles of the young leaves at the three stages. The differential metabolites were mainly related to the pathways of flavonoid, phenylpropanoid, and amino acid biosynthesis. The concentrations of several amino acids (primarily l-theanine, l-glutamate, N2 -acetyl-l-ornithine, l-aspartic acid, d-proline, l-glutamine, l-leucine, and pyroglutamic acid) and 12-OPDA were significantly higher in the albescent stage. In contrast, during the albescent stages, the concentrations of several carbohydrates (d-fructose, ß-d-galactopyranose, 3-O-fucopyranosyl-2-acetamido-2-deoxyglucopyranose, galactose-ß-1, 4-xylose acetyl-maltose, and 2-fucosyllactose) were significantly lower. Moreover, catechins (mainly epigallocatechin and catechin derivatives), dimeric catechins (primarily proanthocyanidins), and flavonol and flavonol/flavone glycosides (mainly kaempferol, myricetin, quercetin, cyanidin, and delphinidin glycosides) were detected at the highest levels in the regreening or pre-albescent stages. The obtained results enhance the current understanding of the metabolic mechanisms of periodic albinism and quality development formation in 'Anji Baicha'. PRACTICAL APPLICATION: The obtained results not only provide information regarding differential metabolites but also advance the understanding of the mechanism of periodic albinism in 'Anji Baicha' at the metabolite level and open up new possibilities for the genetic improvement of tea cultivars.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Aminoácidos/análise , Aminoácidos/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Catequina/análogos & derivados , Catequina/análise , Catequina/metabolismo , Cromatografia Líquida , Glutamatos/análise , Glutamatos/metabolismo , Glicosídeos/análise , Quempferóis/análise , Quempferóis/metabolismo , Metaboloma , Metabolômica , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/metabolismo , Espectrometria de Massas em Tandem
10.
Food Sci Nutr ; 7(4): 1230-1238, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31024696

RESUMO

Based on SPME-GC-MS analysis, it could be found that the production of acetic acid, phenethyl acetate, and isoamyl acetate gradually increased in the apple vinegar fermentation broth with the fermentation time. Consequently, in order to systematically explore the dynamic changes of microbial diversity and metabolites in the process of apple vinegar fermentation, 16S rDNA were sequenced and analyzed in this work. The present results showed that bacterial diversity was rich and exhibited a certain variation during the dynamic fermentation process of apple vinegar. Furthermore, Lactococcus and Oenococcus were the predominant bacteria in the pre-fermentation (alcoholic fermentation) of apple vinegar, while the dominant bacteria in the middle and late fermentation stages (acetic acid fermentation) were Lactococcus and Acetobacter. In addition, during the whole fermentation process of apple vinegar, Lactococcus was the most dominant bacteria, Oenococcus was the unique species in the stage of alcohol fermentation, and Acetobacter increased rapidly in the stage of acetic acid fermentation. In conclusion, our finding provided a theoretical basis for the processing technology of apple vinegar fermentation, and a theory evidence for the safety and health assessment of apple vinegar.

11.
J Anal Methods Chem ; 2019: 8192439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719374

RESUMO

To improve essential oil quality, especially to reserve the thermal instability of compounds, supercritical CO2 extraction (SFE) was applied to recover essential oil from Cymbopogon citronella leaves. A response surface methodology was applied to optimize the extraction process. The highest essential oil yield was predicted at extraction time 120 min, extraction pressure 25 MPa, extraction temperature 35°C, and CO2 flow 18 L/h for the SFE processing. Under these experimental conditions, the mean essential oil yield is 4.40%. In addition, the chemical compositions of SFE were compared with those obtained by hydrodistillation extraction (HD). There were 41 compounds obtained of SFE, while 35 compounds of HD. Alcohols and aldehydes were the main compositions in the essential oils. Furthermore, the antioxidant activities and antimicrobial of essential oils obtained by HD and the evaluated condition of SFE were compared. Results showed that the antioxidant activities of SFE oil are better than those of HD. Minimum inhibitory concentrations (MICs) were determined by the microdilution method. Essential oil obtained from SFE and HD exhibited a significant antimicrobial activity against all tested microorganisms. It is confirmed that the SFE method can be an alternative processing method to extract essential oils from Cymbopogon citronella leaves.

12.
Yi Chuan ; 35(11): 1307-16, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24579314

RESUMO

MicroRNAs (miRNAs) are a class of short non-coding RNAs found widely in eukaryotic organisms. The ptc-MIR169 gene family, which consists of 33 members, is the largest miRNA gene family in poplar (Populus trichocarpa) It is significant to analyze the evolution of the ptc-MIR169 gene family in order to understand the evolutionary mechanisms of miRNAs in poplar. In the present study, we investigated the molecular phylogeny, duplication, expression and target genes of the MIR169 gene family in poplar. Both tandem duplications and chromosome segmental duplications contributed to the expanding of ptc-MIR169 gene family, and the expression patterns diversified obviously among the gene family. These findings suggest that the ptc-MIR169 gene family is involved in complex regulatory networks, and plays significant roles in development and stress response in poplar. This paper provides a reference for the evolutionary study of miRNAs in poplar and related species in Salicaceae.


Assuntos
Evolução Molecular , MicroRNAs/genética , Família Multigênica , Populus/genética , RNA de Plantas/genética , Duplicação Gênica , Filogenia , Plantas/classificação , Plantas/genética , Populus/classificação
13.
Carbohydr Polym ; 89(1): 208-12, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24750625

RESUMO

The effect of hydroxypropyl-ß-cyclodextrin (HPßCD) on the improvement of the solubility and fungicidal activity of carbendazim (MBC) has been investigated. The inclusion complexation of HPßCD with MBC has been prepared and characterized by phase solubility diagram, fluorescence, (1)H NMR, ROESY and FT-IR spectra. The stoichiometric ratio and stability constant were determined by Job's plot and phase solubility studies, respectively. The inclusion complex MBC·HPßCD has exhibited different properties from MBC. The obtained inclusion complex was found to significantly improve the water solubility of MBC. In addition, the biological activity indicated that the complex displayed the better fungicidal activity than MBC. The present study provided useful information for a more rational application of MBC.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Carbamatos/química , Carbamatos/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Espectroscopia de Ressonância Magnética , Solubilidade , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento
14.
Yi Chuan ; 33(7): 801-6, 2011 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-22049696

RESUMO

Genomics is an important subdiscipline of genetics, and it forms a complete research system based on novel theories and techniques. Incorporating genomics in undergraduate curriculum is a response to the need of the development of genetics. The teaching of genomics has significant advantages on developing scientific thinking, enhances bioethics accomplishment, and professional interests in undergraduate students. The integration of genomics into genetics is in accordance with the principles of subject development and education. Related textbooks for undergraduate education are currently available in China, and it is feasible to set up a genetics and genomics integrative course by modifying teaching contents of the genetics course, selecting appropriate teaching approaches, and optimal application of the computer-assisted instruction.


Assuntos
Genética/educação , Genômica/educação , China , Instrução por Computador , Currículo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA